Control of Codling Moth in California Pear Orchards Using Granulosis Virus

Rachel Elkins, Chuck Ingels, Franz Niederholzer, Robert VanSteenwyk, Lucia Varela, Lynn Wunderlich University of California Cooperative Extension

Codling Moth in California

- Primary pest; basis of entire insect management program
- High populations, 2-3 generations
- No effective natural enemies
- Historically controlled by organophophates
- Increased problem where there are unfarmed trees

Current Control Strategies

- Mating disruption is the foundation
 - Passive emitters
 - Puffers
 - Sprayables
- Supplemented by "reduced risk" insecticides
 - Insect growth regulators
 - Neonicotinoids, other "new chemistry"
 - Biologicals
 - Oils

Organic Orchards – to 2003

- Mating disruption passive emitters, puffers
- Oil smother eggs
- Biologicals BT, *Trichogramma* spp. releases
- Cultural (sanitation)
 - Remove infested fruit
 - Cardboard bands trap pupae

Current Organic Strategies

- Mating disruption is the base
 - Passive emitters only 150-400/acre
 - Applied 1-2x/season
- Supplemental Materials Multiple Applications = COSTLY!
 - Spinosad (Entrust®)
 - Oils (OMRI-allowed)
 - Biologicals BT, neem (poor efficacy)
 - Kaolinic clay (Surround[®])
- Sanitation

Codling Moth Granulosis Virus yet to be registered in California

- 3 products currently federally registered
 - Carpovirusine®
 - Cyd-X[®]
 - Virosoft®
- Registered and used throughout world and in other U.S. states
 - Competitive issue

Granulosis Virus Research in California

- Research began in 1970's Dr. Louis Falcon, UC Berkeley industry supported; basis of recent work
- Some commercial use in 1980's
- No activity until 2001 Virosoft[®] (Biotepp, Quebec, Canada)
- Field research from 2001-2005
 - 7 northern California counties; all major districts
 - UC campus and Extension personnel
- Funding sources IR-4 Minor Use Program, Pear Pest Management Research Fund, Gerber Products Inc., registrants (Biotepp, Certis USA, Sumitomo Corp.)

Research Chronology

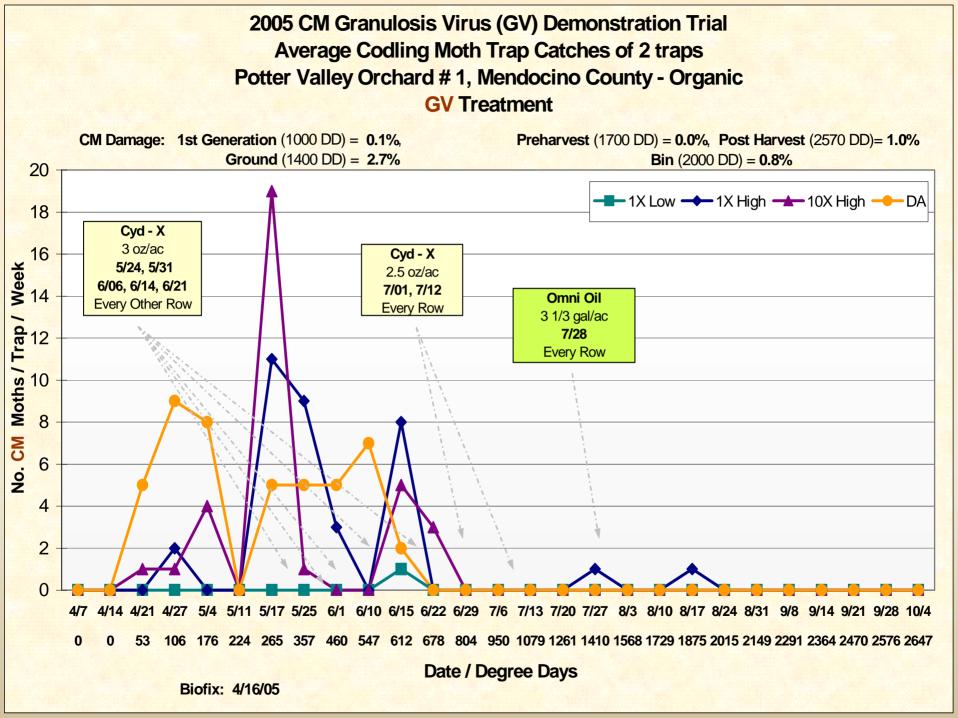
2001 – Virosoft ® (Biotepp, Quebec, Canada)

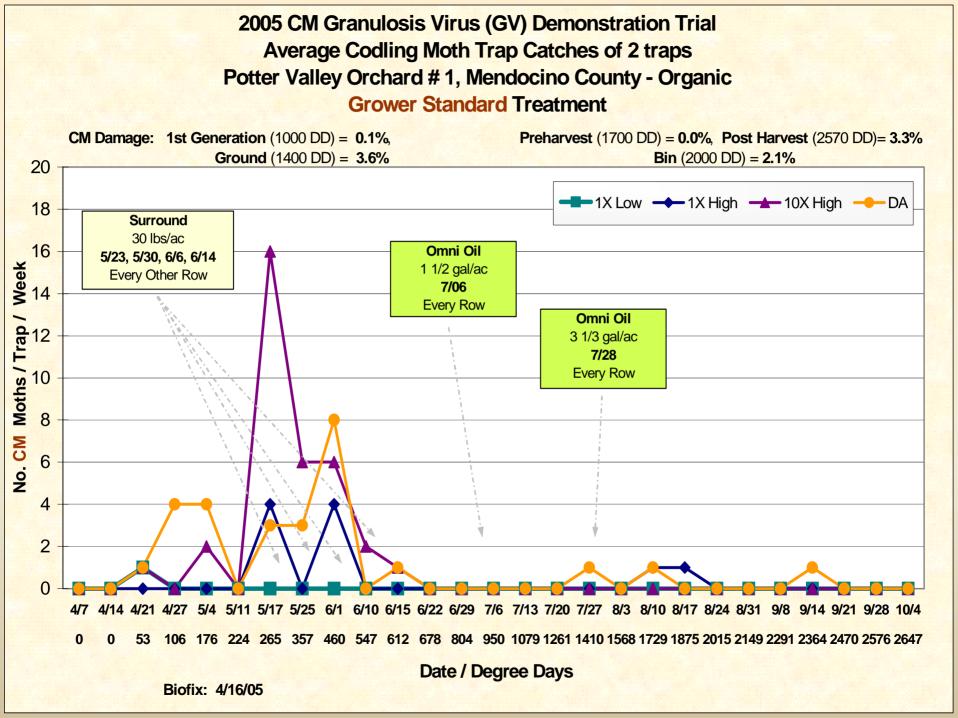
- Replicated trials
- 3 orchards, grower-applied
- Unsuccessful; material inactive

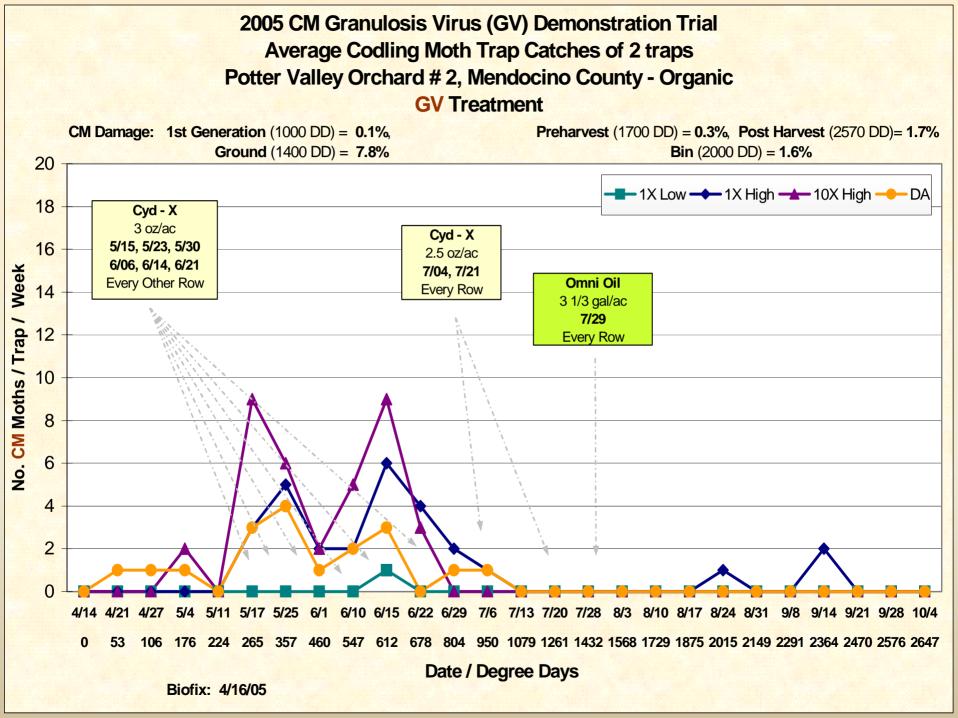
2003

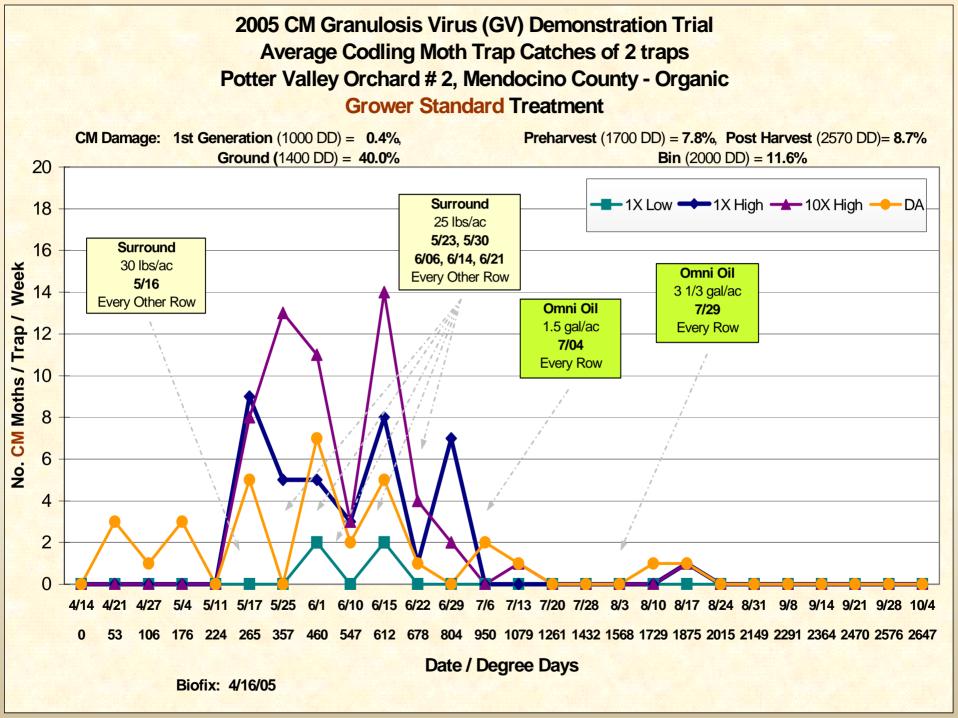
- Replicated trials, 4 locations, grower-applied
- Carpovirusine[®], Cyd-X[®]
- Compared to MD, oil, spinosad (Entrust ®)
- Significantly reduced damage by 70-90% vs.
 MD alone and 60-90% vs. untreated controls

Treatments

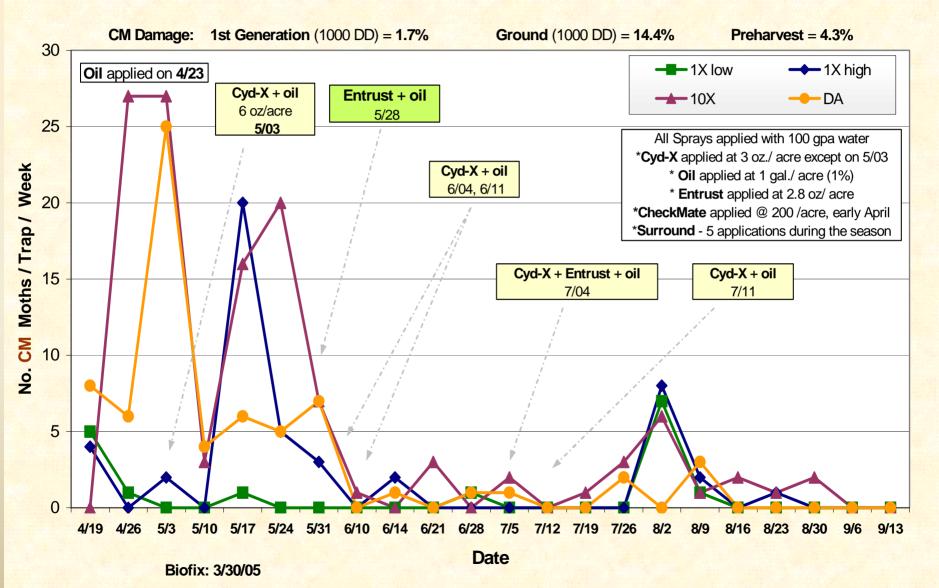

(Varied by location)

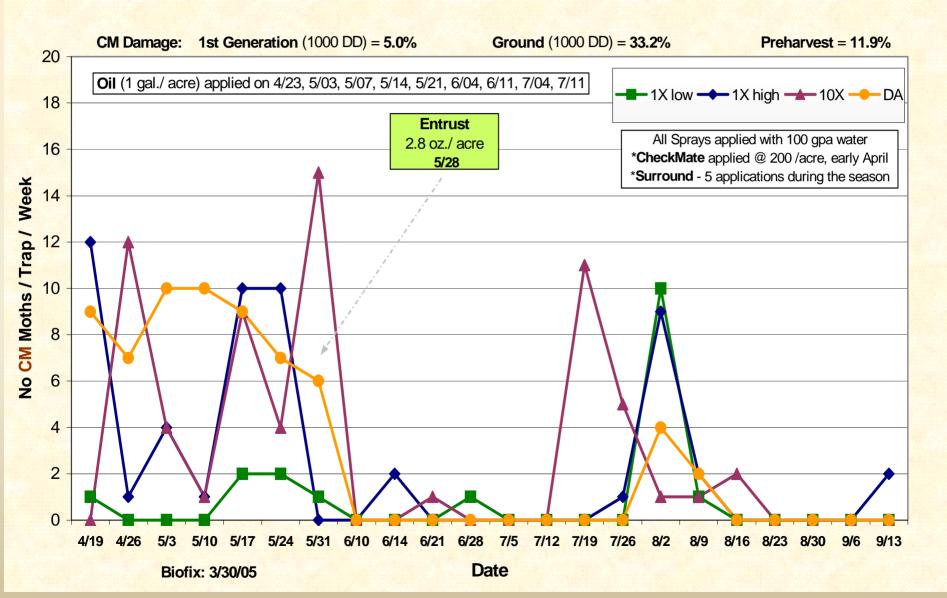

Treatment	Company	Rate	No. of sites
Carpovinsine GV+Nufilm17	Sumitomo/ Calliope	13.5oz/acre no max	2
Cyd-X GV +Nufilm17		3-6 oz./acre no max	4
Entrust (spinosad) + oil	DowAgro	2-3 oz./acre 9oz max	3
Oil (Gavicide 90, 415)	Various	1.2 gal /acre	3
CM MD alone	Various	Various	3
Untreated control			2

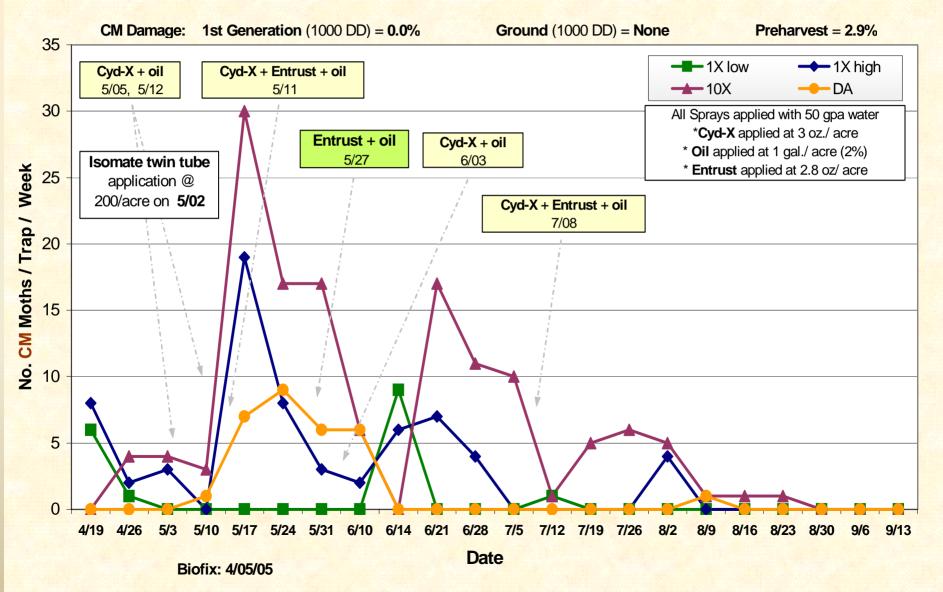

Research Chronology (Cont..)

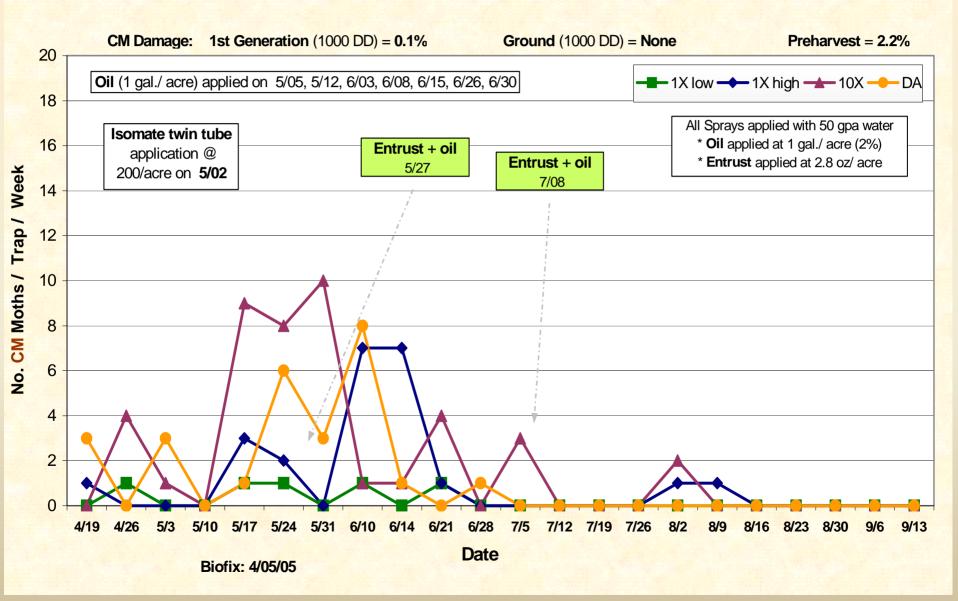

2005

- Cyd-X[®], 3 oz./acre
- Demonstration (non-replicated), 5 orchards (all with MD), grower-applied
- Compared to MD, Surround[®], oil, Entrust[®] programs
- Numerical differences during season consistently favored GV
- Results significantly reduced damage in postharvest sample (300 fruit remaining in trees after harvest)






2005 CM Granulosis Virus (GV) Demonstration Trial Average Codling Moth Trap Catches of 2 traps Orchard # 1, Sacramento County - Organic GV Treatment


2005 CM Granulosis Virus (GV) Demonstration Trial Average Codling Moth Trap Catches of 2 traps Orchard # 1, Sacramento County - Organic Grower Standard Treatment

2005 CM Granulosis Virus (GV) Demonstration Trial Average Codling Moth Trap Catches of 2 traps Orchard # 2, Sacramento County - Organic GV Treatment

2005 CM Granulosis Virus (GV) Demonstration Trial Average Codling Moth Trap Catches of 2 traps Orchard # 2, Sacramento County - Organic Grower Standard Treatment

			% Damage ^a	
Treatment	Rate	No. Appl.	Tree (July 23)	Ground (July 1)
MD plus oil	2 gal.	7	0.2 a	1.4
MD+oil+Entrust	3 oz.	7+3	0.2 a	1.0
MD+Cyd-X	6 oz.	7	0.1 a	1.7
MD alone, then oil	-	3	0.8 b	2.3
^a means followed by the same letter within a column are not significantly different				

Mean Percent Codling Moth Infected Fruit, 1st Generation, Courtland, CA – 2003

(Fishers protected LSD, P≤.05).

^b16 oz. Nufilm 17 applied with Cyd-X.

			% Da	mage ^a
Treatment	Rate	No.Appl.	Tree (July 18)	PH (Sept. 20)
MD plus oil	2 gal.	7	2.5 a	10.0
MD+oil then	2 gal. + 3oz.	7 + 3	1.6 a	10.2
Entrust				
MD+Cyd-X ^b	6 oz.	7	2.0 a	6.4
MD alone, then oil	2 gal.	3	8.1 b ^b	14.6

Mean Percent Codling Moth Infected Fruit, Harvest, Courtland, CA – 2003

^a Means followed by the same letter within a column are not significantly different (Fishers protected LSD, $P \le .05$).

^b No. strikes significantly higher in lower fruit

Mean Percent Codling Moth Infested Fruit Inspected after the First Generation, Ukiah, CA – July 3 – 17, 2003

	% infestation/1000 fruit ^a				
Treatment	Emerged from egg, no sting	Sting No worm	Dead worm	Live worm	
MD plus Cyd-X ^b	.00	.02	.00	.01	
MD plus	.02	.05	.01	.02	
Carpovirusine ^c					
MD plus Assail	.00	.01	.00	.02	
MD alone	.00	.00	.00	.00	
Difference	NS	NS	NS	NS	

^a Means followed by the same letter within a column are not significantly different (Fisher's protected LSD, p≥0.05). Data analyzed using an arcsin transformation.
 ^b Treatments contained 0.0625% NuFilm-17.

Mean Percent Codling Moth Infested Pear Fruit Inspected Prior to Commercial Harvest after the 2nd generation, Ukiah, CA – August 7, 2003

	% infestation/1000 fruit ^a			
Treatment	Sting – no worm	Live worm	Worm gone	
MD plus Cyd-X ^b	0.4	0.0	0.1 a	
MD plus	0.3	0.1	0.2 a	
Carpovirusine ^c				
MD alone	0.4	0.2	1.0 b	
MD + Assail	0.0	0.1	0.0 a	

 ^a Means followed by the same letter within a column are not significantly different (Fisher's protected LSD, p≥0.05). Data analyzed using an arcsin transformation.
 ^b Treatments contained 0.0625% NuFilm-17.

			% Damage ^a		
Treatment	Rate	No.Appl.	1 st Gen. (July 14)	Harvest (Aug. 7)	
MD plus 415 oil ^c	2.5 gal.	4	0.5	4.0 ab	
MD plus Entrust ^b	2 oz.	4	0.8	3.7 ab	
MD plus Cyd-X/					
Nufilm 17	3 oz./16 oz.	4	1.0	2.3 a	
MD alone	-	-	0.7	7.2 b	
Untreated Control	-	-	3.8	34.0 -	

Mean Percent Codling Moth-Infested Fruit, Potter Valley, CA – 2003

^a Means followed by the same letter within a column are not significantly different (Fisher's protected LSD, P≤0.05). Data analyzed using an arcsin square root transformation.

^b 1 oz. Entrust® applied to all treatments on July 12 to control pear slug.

^c 3 gal. 415 oil applied to all treatments on August 4 to control spider mites.

Mean Percent Codling Moth Fruit Damage 1st Generation, June-July 2005 Tree Fruit Count - Organic

	Tree (%/1000)		Ground (%/500)	
Site	GV	G	GV	G
Lake	0.5	0.3	1.0	4.6
Mendocino				
1	0.1	0.1	2.7	3.6
2	0.1	0.4	7.8	40.0
Sacramento				
1	1.7	5.0	14.4	33.2
2	0.0	0.1		
ANOVA	p=.44		p=	.23

Mean Percent Codling Moth Fruit Damage 2nd generation, July-August 2005 Pre-harvest Tree Fruit Count - Organic

	Damage (%/2000)		
Site	GV	G	
Lake	0.8	1.2	
Mendocino			
1	0.0	0.0	
2	0.3	7.7	
Sacramento			
1	4.3	11.9	
2	2.9	2.2	
ANOVA	p=.34		

Mean Percent Codling Moth Fruit Damage Late 1st - 2nd generation, August-Sept. 2005 Harvest Bin Count - Organic

	Damage (%/1000)		
Site	GV	G	
Mendocino			
1	0.8	2.1	
2	1.6	11.6	
ANOVA	p= .31		

Mean Percent Codling Moth Damage 2nd - 3rd generation, September 2005 Post-Harvest Tree Fruit Count - Organic

	Damage (%/2000)		
Site	GV	G	
Lake	2.7	5.3	
Mendocino			
1	1.0	3.3	
2	1.7	8.7	
	Α	В	
ANOVA	p=.02		

CONCLUSIONS FROM 2001-2005

- Granulosis virus is an effective supplement to CM mating disruption
- Applications must be made frequently, at least 2x per larval hatch; @ \$30/acre, this is costly; every other row every week a good strategy
- Population reduction appears to be cumulative through the season
- MD is needed; combine GV with oil, spinosad, and sanitation for total IPM program
- Control should become easier over several seasons (based on post-harvest data)

"Rules to Live By"

Organic Codling Moth Control in California

- Mating disruption is the foundation but is seldom stand alone
- Once damage goes above 20% reducing pressure is very difficult without non-allowd (e.g. OP) insecticides
- Frequent supplemental sprays are likely required
- There are no "panacea" materials
- Sanitation, especially post-harvest, is a must
- Late-season varieties will be more problematic due to exposure to more generations
- Start early and "hit em hard"!

THANK YOU!

